

AUTHOR Dr. Abdelghafour HALIMI

mundiwebservices.com

Orfeo Toolbox

Tutorials

Mundi Copernicus DIAS
(Data and Information

Access Services)

Mundi Web Services, Atos, Atos Consulting, Atos Worldline, Atos Sphere, Atos Cloud and
Atos WorldGrid are registered trademarks of Atos SA. July 2011. © Copyright 2018 Mundi
Web Services
All rights reserved. Reproduction in whole or in parts is prohibited without the written
consent of the copyright owner.

1. Contents

2. The Orfeo Toolbox .. 3

2.1. Introduction .. 3

2.2. Application features .. 3

2.3. Using OTB applications ... 3

2.3.1. Interfaces .. 3

2.3.1.1. Command line interface .. 3

2.3.1.2. Monteverdi (Graphical user interface) ... 4

2.3.1.3. Python API ... 6

3. Tutorials .. 7

3.1. Data Fusion Use Case .. 7

3.1.1. Goal ... 7

3.1.2. Skills acquired at the end of the training .. 7

3.1.3. Training kit .. 7

3.1.4. Applications ... 9

3.1.4.1. SAR Processing .. 10

• Compute Modulus And Phase ... 10

• SAR Deburst .. 12

3.1.4.2. Image Filtering .. 14

• Despeckle .. 14

3.1.4.3. Geometry Correction .. 16

• SARMultiLook .. 16

• OrthoRectification ... 18

3.1.4.4. Image Manipulation .. 19

• ExtractROI ... 19

• Superimpose ... 22

• ConcatenateImages .. 24

3.1.4.5. Classification ... 26

• KMeansClassification .. 26

3.1.5. Summary ... 28

3.2. Interferometry Use case ... 30

3.2.1. Goal ... 30

3.2.2. Skills acquired at the end of the training .. 30

3.2.3. Training kit .. 30

3.2.4. Processing Chains .. 32

3.2.4.1. Implementation .. 32

3.2.4.2. Results ... 35

2. The Orfeo Toolbox

2.1. Introduction

The Orfeo toolbox (OTB) is a remote sensing image processing library. The project was initiated by the CNES
(French National Center for Space Studies) in 2006 and is subject to continuous development by private
companies and the open-source community. The purpose of OTB is to provide users of Earth observation
data the necessary tools to use these images. Originally, the library targeted the very high spatial resolution
images acquired by the Orfeo constellation (Pleiades in optics, Cosmo-Skymed [CSK] in radar, but also other
sensors). The OTB consists of a set of classes coded in C++ and applications built upon these classes.

2.2. Application features

OTB application features came from the C++ library classes. They meet the users’ demands
through simplified access and factoring requirements in data processing. They allow us, among
other things, to carry out the following operations:

• Access to data: read/write most satellite image formats, access metadata, read/write
vector formats (shp, kml, etc.), digital terrain models, lidar data;

• Basic image manipulation: extraction, pixel-to-pixel calculations;
• Filtering: signal processing for optical and radar imaging;
• Feature extraction: textures (Haralick, Structural Feature Set [SFS]), edge detection, points

of interest, alignments, lines, descriptors (Scale-Invariant Feature Transform [SIFT],
Speeded Up Robust Features [SURF]);

• Image segmentation: region growing, watershed, level set, mean-shift;
• Classification: K-means, support vector machine, random forests, as well as most recent

machine learning algorithms;
• Detection of changes between images;
• Orthorectification, cartographic projections;
• Calculation of radiometric indices: vegetation, water, soil, etc.

2.3. Using OTB applications

The OTB applications aim to provide users with a number of implemented processes. These
applications can be used directly through multiple interfaces (command line, GUI, Python
language, etc.). Currently, there are more than 100 applications that are organized in various
categories.

2.3.1. Interfaces

2.3.1.1. Command line interface

Called “Terminal” on UNIX (Linux, Mac OS X), “DOS command prompt” in Windows (cmd), this
interface makes it possible to call programs without going through a graphical interface. Not
very user friendly at first, this interface has many advantages, including the possibility of
performing batch processes, or automating sequences of several applications. The set of
executables using OTB applications on the command line are prefixed with “otbcli_”.

To use an OTB application in command line, one can first get help from the application. Let us
take the “Read Image Info” application for instance, which display information about the input
image like: image size, origin, spacing, metadata, projections, etc. In the command prompt (on
Windows) or the terminal (Linux or Mac OS X), we enter the following command for help:

This command returns the description of the application, the parameters expected as input,
and also a command line example:

2.3.1.2. Monteverdi (Graphical user interface)

Monteverdi is a satellite image viewer. Its main features are:

• Performance: Navigate instantly in full size satellite images thanks to its hardware

accelerated rendering engine. Compose tiles or compare multiple images in a
stack with rapid cycling and shader effects.

• Sensor geometry support: View raw images directly in sensor geometry!
Resampling is handled by the GPU through texture mapping. OTB automagically
handles coordinates mapping between actors and viewport geometries.

• Powerful: Access to all processing application from OTB. Orthorectification, optical
calibration, classification SAR processing, and much more!

otbcli_ReadImageInfo -help

This is the ReadImageInfo application, version 7.0.0

Get information about the image

Tags: Image Manipulation Utilities Image MetaData

Display information about the input image like image size, origin, spacing, metadata,

projections...

Parameters:

MISSING -in <string> Input Image (mandatory)

-keywordlist <boolean> Display the OSSIM keywordlist (mandatory, default

 value is false)

 -outkwl <string> Write the OSSIM keywordlist to a geom file

 (optional, off by default)

 -rgb <group> Default RGB Display

 -progress <boolean> Report progress

 -help <string list> Display long help (empty list), or help

 for given parameters keys

Use -help param1 [... paramN] to see detailed documentation of those parameters.

Examples:

otbcli_ReadImageInfo -in QB_Toulouse_Ortho_XS.tif

Authors:

OTB-Team

 This is Monteverdi’s main window where the different functionalities are:

With the graphical user interface (GUI) of Monteverdi, it is also possible to interactively load
otb-applications and use them to process images. For that purpose, the user just has to
load otb-applications by clicking on the Main menu, File/Load OTB-Applications (or by
simply using the shortcut CTRL+A). The figures below represent the otb-applications loading
window as well as the previews example “Read Image Info” application. The applications
are arranged in thematic functionalities; the user can also quickly find the wanted
application by typing its name in the dedicated field at the top of the loading window.

1 Main Menu 2 Top toolbar 3 Image View

4 Widgets (OTB Application Navigator) 5 Layer Stack

2.3.1.3. Python API

It is possible to use OTB applications from code written in Python because of a binding
mechanism. OTB applications can also be combined with Python modules for geospatial
purposes.

The applications are accessed from Python, through a module named “otbApplication”, an
example of the “Read Image Info” application from Python is given here:

import otbApplication

app = otbApplication.Registry.CreateApplication("ReadImageInfo")

app.SetParameterString("in", "SLC_IW1.tif")
app.SetParameterString("outkwl", "Information.geom")

app.ExecuteAndWriteOutput()

3. Tutorials

3.1. Data Fusion Use Case

3.1.1. Goal

The purpose of this tutorial is to give a comprehensive overview of the ORFEO ToolBox. This tutorial
also gives a better (or this tutorial allows readers to gain a better) understanding of different OTB
tools (OTB application from the different interfaces) in order to process and analyze remote
sensing images.

3.1.2. Skills acquired at the end of the training

At the end of the training, the reader will be able to set up OTB processing, and use OTB

applications to carry out:

• Basic SAR processing
• Image manipulation
• Geometric corrections
• Orthorectification
• Data fusion
• Classification

3.1.3. Training kit

• Mundi OTB Docker Image

The docker version made available on Mundi, has been built by Mundi development team
and can be found here. Note that, you will have to log with your mundi credentials to access
the mundi shared docker repository.

To use the OTB docker image on your virtual machine (VM) , docker must be installed in all
Mundi VM templates and the following commands must be executed replacing <variable>
according to your needs:

- Log yourself to the docker repository with your mundi website credentials :
sudo docker login -u <Mundi website user email> -p <Mundi website user password>

https://publicreg.mundiwebservices.com/

- Upload the desired docker images on your VM :
sudo docker pull publicreg.mundiwebservices.com/orfeo_toolbox:<version>

- Launch your docker in order to use orfeo-toolbox :
sudo docker run -it -v $(pwd):/data

publicreg.mundiwebservices.com/orfeo_toolbox:<version> bash

• Dataset

The data used in this tutorial includes images from Sentinel-1 SLC IW and Sentinel 2 L2A
over the metropolitan area around Marseille, France. The figure below shows the extent
and location of the Sentinel 2 data (red), the Sentinel 1 data (yellow), and the area of
interest (blue).

https://share.mundiwebservices.com/#browse/search/docker:6dfda0a843f4201d7c831731b2609aee
https://publicreg.mundiwebservices.com/

• Sentinel-1 SLC IW : Single Look Complex (SLC) Interferometric Wide (IW) Swath products
consist of focused SAR data geo-referenced using orbit and attitude data from the
satellite and provided in zero-Doppler slant-range geometry. Mundi Web Services
provides the complete collection, with fresh free data ONLINE from January 2018 with
global coverage, and from January 2017 for Europe. A rolling policy of 12 months for
World and 24 months for Europe is currently applied. We are making more data
available every day. Discover and view the products with our Geodata UI here
The IW SLC product used in this tutorial contains one image per sub-swath, per
polarisation channel, for a total of three images. Each sub-swath image consists of a
series of bursts, where each burst was processed as a separate SLC image. The
individually focused complex burst images are included, in azimuth-time order, into a
single sub-swath image, with black-fill demarcation in between as can be seen below:

https://mundiwebservices.com/geodata/S1_L1_SLC

• Sentinel-2: The Sentinel-2 L2A data is atmospherically corrected using Sen2Cor
processor and PlanetDEM Digital Elevation Model (DEM). L2A products are published 48–
60 hours after the L1C products and available for you to browse through our Mundi Web
Services Geodata UI.

The S2-L2A product used in this tutorial consists of only three images representing the
true composite color that use bands of visible light red (B04), green (B03), and blue
(B02) in the corresponding red, green and blue color channels, resulting in a natural
colored result. It is a good representation of the Earth as humans would see it naturally
as can be seen below:

3.1.4. Applications

This section presents the use of OTB applications typically encountered in remote sensing, from
image preprocessing to retrieval of information.
Each section below will introduce tools for carrying out common satellite image processing
operations. In the first part, we will introduce some preprocessing tools needed to produce data
that can be used in a spatial context from SLC-Sar remote sensing images. The second part will
be devoted to geometric correction and orthorectification of SLC-Sar images. The third part will
present some OTB applications for extracting information from the preprocessed images. Finally,
applications dedicated to data fusion and classification will be presented. All these sections are
organized in a pipeline depicted in the following diagram; whose components are detailed below:

https://mundiwebservices.com/geodata/S2_MSI_L2A

3.1.4.1. SAR Processing

• Compute Modulus And Phase

This application computes the modulus and the phase of a complex SAR image or an image with
2 components (real and imaginary parts).

• Description

This application computes the modulus and the phase of a complex SAR image. The input should
be a single band image with complex pixels or a 2 bands image (real and imaginary components
in separate bands).

• Parameters

Input Image -in image Mandatory
Input image (complex single band or 2 bands (real/imaginary parts))

Modulus -modulus image [dtype] Mandatory
Modulus of the input image computes with the following formula: where real and imag are
respectively the real and the imaginary part of the input complex image.

Phase -phase image [dtype] Mandatory
Phase of the input image computes with the following formula: where real and imag are respectively the
real and the imaginary part of the input complex image.

Available RAM (MB) -ram int Default value: 256
Available memory for processing (in MB).

• Implementations
• Graphical User Interface

• Command line interface

• Python API

otbcli_ComputeModulusAndPhase \
-in \
Data/S1_SLC/S1A_IW_SLC__1SDV_20200118T173043_20200118T173110_030858_038A7B_7AD7.SAFE/ \
measurement/s1a-iw1-slc-vv-20200118t17304-20200118t173109-030858-038a7b-004.tiff \
-modulus modulus.tif -phase phase.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("ComputeModulusAndPhase")

app.SetParameterString("in", "
Data/S1_SLC/S1A_IW_SLC__1SDV_20200118T173043_20200118T173110_030858_038A7B_7AD7.SAFE/ \
measurement/s1a-iw1-slc-vv-20200118t173044-20200118t173109-030858-038a7b-004.tiff")
app.SetParameterString("modulus", " modulus.tif")
app.SetParameterString("phase", "phase.tif")

app.ExecuteAndWriteOutput()

• Result

• SAR Deburst

This application performs deburst of Sentinel1 IW SLC images by removing redundant lines.

• Description

Sentinel1 IW SLC products are composed of several burst overlapping in azimuth time for each

subswath, separated by black lines. The deburst operation consist in generating a continuous

image in terms of azimuth time, by removing black separation lines as well as redundant lines

between bursts.

• Parameters

Input Sentinel1 IW SLC Image -in image Mandatory
Raw Sentinel1 IW SLC image, or any extract of such made by OTB (geom file needed)

Output Image -out image [dtype] Mandatory
Deburst image, with updated geom file that can be further used by Orthorectification application. If the input image is a
raw Sentinel1 product, uint16 output type should be used (encoding of S1 product). Otherwise, output type should match
type of input image.

Select the modes for output image -onlyvalidsamples bool Default value: false
If true, the selected mode is with only valid samples.

Available RAM (MB) -ram int Default value: 256
Available memory for processing (in MB).

• Implementations

• Graphical User Interface

• Command line interface

• Python API

otbcli_SARDeburst -in modulus.tif -out modulus_deburst.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("SARDeburst")

app.SetParameterString("in", "modulus.tif")
app.SetParameterString("out", " modulus_deburst.tif")

app.ExecuteAndWriteOutput()

• Result

3.1.4.2. Image Filtering

• Despeckle

Perform speckle noise reduction on SAR image.

• Description

SAR images are affected by speckle noise that inherently exists in and which degrades the image

quality. It is caused by the coherent nature of back-scattered waves from multiple distributed

targets. It is locally strong and it increases the mean Grey level of a local area.

Reducing the speckle noise enhances radiometric resolution but tend to decrease the spatial

resolution. Several different methods are used to eliminate speckle noise, based upon different

mathematical models of the phenomenon. The application includes four methods: Lee, Frost ,

GammaMAP and Kuan.

• Parameters

Input Image -in image Mandatory
Input image.

Output Image -out image [dtype] Mandatory
Output image.

Speckle filtering method -filter [lee| frost| gammamap| kuan] Default value: lee

Lee options:
Radius -filter.lee.rad int Default value: 1
Radius in pixel
Number of looks -filter.lee.nblooks float Default value: 1
Number of looks in the input image.

Kuan options:
Radius -filter.kuan.rad int Default value: 1
Radius in pixel
Number of looks -filter. kuan.nblooks float Default value: 1
Number of looks in the input image.

Frost options:
Radius -filter.frost.rad int Default value: 1
Radius in pixel
Deramp factor -filter.frost.deramp float Default value: 0.1

GammaMap options:
Radius -filter.gammamap.rad int Default value: 1
Radius in pixel
Number of looks -filter. gammamap.nblooks float Default value: 1
Number of looks in the input image.

• Implementations

• Graphical User Interface

• Command line interface

• Python API

otbcli_Despeckle -in modulus_deburst.tif -filter frost -filter.frost.rad 3 \

-out despeckle_modulus_deburst.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("Despeckle")

app.SetParameterString("in", " modulus_deburst.tif")
app.SetParameterString("filter", " frost")
app.SetParameterInt("filter.frost.rad", 3)
app.SetParameterString("out", " despeckle_modulus_deburst.tif")

app.ExecuteAndWriteOutput()

• Result

3.1.4.3. Geometry Correction

• SARMultiLook

SAR Multi-Look creation.

• Description

This application creates the multi-look image of a SLC product.

• Parameters

Input Complex Image -incomplex image
Complex Image to perform computation on.

Input Image -inreal image
Image to perform computation on.

Averaging on distance -mlran int Default value: 3
Averaging on distance.

Averaging on azimut -mlazi int Default value: 3
Averaging on azimut.

• Implementations
• Command line Interface

• Python API

Gain to apply on ML image -mlgain float Default value: 0.1
Gain to apply on ML image.

Output ML Image -out image [dtype] Mandatory
Output ML image.

Available RAM (MB) -ram int Default value: 256
Available memory for processing (in MB).

otbcli_SARMultiLook -inreal despeckle_modulus_deburst.tif \

-out Multilook_despeckle_modulus_deburst.tif -mlran 8 -mlazi 2 -mlgain 0.2

import otbApplication

app = otbApplication.Registry.CreateApplication("SARMultiLook")

app.SetParameterString("inreal", " despeckle_modulus_deburst.tif")
app.SetParameterString("out", " Multilook_despeckle_modulus_deburst.tif")
app.SetParameterInt("mlran", 8)
app.SetParameterInt("mlazi", 2)
app.SetParameterInt("mlgain", 0.2)

app.ExecuteAndWriteOutput()

• Graphical User Interface

• Result

• OrthoRectification

This application allows ortho-rectifying optical and radar images from supported sensors.

• Description

This application uses inverse sensor modelling combined with a choice of interpolation functions
to resample a sensor geometry image into a ground geometry regular grid. The ground geometry
regular grid is defined with respect to a map projection (see map parameter). The application
offers several modes to estimate the output grid parameters (origin and ground sampling
distance), including automatic estimation of image size, ground sampling distance, or both, from
image metadata, user-defined ROI corners, or another ortho-image. A digital Elevation Model
along with a geoid file can be specified to account for terrain deformations. In case of SPOT5
images, the sensor model can be approximated by an RPC model in order to speed-up
computation.

• Parameters

Input Image -io.in image Mandatory
The input image to ortho-rectify

Output Image -io.out image [dtype] Mandatory
The ortho-rectified output image

DEM directory -elev.dem directory
This parameter allows selecting a directory containing
Digital Elevation Model files.

Map Projection -map [utm | lambert2 | lambert93 | wgs | epsg] Default value: utm
Defines the map projection to be used.

Universal Trans-Mercator (UTM) options:
Zone number -map.utm.zone int Default value: 31
Northern Hemisphere -map.utm.northhem bool Default value: false

EPSG Code options:
EPSG Code -map.epsg.code int Default value: 4326

Output Image Grid
Parameters estimation modes -outputs.mode [auto|autosize|autospacing|outputroi|orthofit] Default value: auto

• Implementations

• Command line Interface

• Python API

Geoid File -elev.geoid filename [dtype]
Use a geoid grid to get the height above the ellipsoid in
case there is no DEM available, no coverage for some
points or pixels with no_data in the DEM tiles.

Default elevation -elev.default float Default value: 0
This parameter allows setting the default height above
ellipsoid when there is no DEM available, no coverage for
some points or pixels with no_data in the DEM tiles, and no
geoid file has been set.

otbcli_OrthoRectification -io.in despeckle_modulus_deburst.tif \

-io.out Ortho_despeckle_modulus_deburst.tif -map wgs

import otbApplication

app = otbApplication.Registry.CreateApplication("OrthoRectification")

app.SetParameterString("io.in", " despeckle_modulus_deburst.tif")
app.SetParameterString("io.out", " Ortho_despeckle_modulus_deburst.tif")
app.SetParameterString("map", " wgs")

app.ExecuteAndWriteOutput()

• Graphical User Interface

• Result

3.1.4.4. Image Manipulation

• ExtractROI

Extract a ROI defined by the user.

• Description

This application extracts a Region Of Interest with user parameters. There are four mode of
extraction. The standard mode allows the user to enter one point (upper left corner of the region to
extract) and a size. The extent mode needs two points (upper left corner and lower right) and the
radius mode need the center of the region and the radius: it will extract the rectangle containing
the circle defined and limited by the image dimension. The fit mode needs a reference image or

vector and the dimension of the extracted region will be the same as the extent of the reference.
Different units are available such as pixel, image physical space or longitude and latitude.

• Parameters

Input Image -in image Mandatory
Image to be processed

Output Image -out image [dtype] Mandatory
Region of interest from the input image

Extraction mode -mode [standard | fit | extent |
radius]
Region of interest from the input image

Fit options:

Reference image -mode.fit.im image Mandatory
Reference image to define the ROI

Reference vector -mode.fit.vect vectorfile
Mandatory
The extent of the input vector file is computed
and then gives a region of interest that will be
extracted.

• Implementations

• Command line Interface

• Python API

Extent options:

X coordinate of the Upper left corner -mode.extent.ulx float
X coordinate of upper left corner point.
Y coordinate of the Upper left corner -mode.extent.uly float
Y coordinate of upper left corner point.
X coordinate of Lower Right corner point -mode.extent.lrx float
X coordinate of lower right corner point.
Y coordinate of Lower Right corner point -mode.extent.lry float
Y coordinate of lower right corner point.
Unit -mode.extent.unit [pxl | phy | lonlat] Default value: pxl

Radius options:

Radius mode.radius.r float Default value: 0
This is the radius parameter of the radius mode.

Radius unit -mode.radius.unitr [pxl|phy] Default value: pxl
Center unit -mode.radius.unitc [pxl|phy|lonlat] Default value: pxl

otbcli_ExtractROI -in Ortho_despeckle_modulus_deburst.tif -mode extent \

-mode.extent.ulx 4.96445 -mode.extent.uly 43.3881 -mode.extent.lrx 5.26451 \

-mode.extent.lry 43.5729 -mode.extent.unit lonlat -out ExtractROI_Ortho.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("ExtractROI")

app.SetParameterString("in", " Ortho_despeckle_modulus_deburst.tif")
app.SetParameterString("mode", " extent")
app.SetParameterFloat("mode.extent.ulx", 4.96445)
app.SetParameterFloat("mode.extent.uly", 43.3881)
app.SetParameterFloat("mode.extent.lrx", 5.26451)
app.SetParameterFloat("mode.extent.lry", 43.5729)
app.SetParameterString("mode.extent.unit", " lonlat")
app.SetParameterString("out", " ExtractROI_Ortho.tif")

app.ExecuteAndWriteOutput()

• Graphical User Interface

• Result

• Superimpose

Using available image metadata, project one image onto another one.

• Description

This application performs the projection of an image into the geometry of another one.

• Parameters

Reference input -inr image Mandatory
The input reference image.

The image to reproject -inm image Mandatory
The image to reproject into the geometry of the reference input.

Output image -out image [dtype] Mandatory
Output reprojected image.

Interpolation -interpolator [bco | nn | linear] Default value: bco
This group of parameters allows defining how the input image will be interpolated during resampling.

• Implementations

• Command line Interface

• Python API

otbcli_Superimpose -inr ExtractROI_Ortho.tif -inm Data/S2/T31TFJ_20181211T103421_B02_10m.jp2 \

-out Superimposed_S2_B02_to_S1.tif

otbcli_Superimpose -inr ExtractROI_Ortho.tif -inm Data/S2/T31TFJ_20181211T103421_B03_10m.jp2 \

-out Superimposed_S2_B03_to_S1.tif

otbcli_Superimpose -inr ExtractROI_Ortho.tif -inm Data/S2/T31TFJ_20181211T103421_B04_10m.jp2 \

-out Superimposed_S2_B04_to_S1.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("Superimpose")

app.SetParameterString("inr", " ExtractROI_Ortho.tif")
app.SetParameterString("inm", " Data/S2/T31TFJ_20181211T103421_B02_10m.jp2")
app.SetParameterString("out", " Superimposed_S2_B02_to_S1.tif")

app.SetParameterString("inr", " ExtractROI_Ortho.tif")
app.SetParameterString("inm", " Data/S2/T31TFJ_20181211T103421_B03_10m.jp2")
app.SetParameterString("out", " Superimposed_S2_B03_to_S1.tif")

app.SetParameterString("inr", " ExtractROI_Ortho.tif")
app.SetParameterString("inm", " Data/S2/T31TFJ_20181211T103421_B04_10m.jp2")
app.SetParameterString("out", " Superimposed_S2_B04_to_S1.tif")

app.ExecuteAndWriteOutput()

• Graphical User Interface

• Result

• ConcatenateImages

Concatenate a list of images of the same size into a single multi-channel image.

• Description

Concatenate a list of images of the same size into a single multi-channel image. It reads the
input image list (single or multi-channel) and generates a single multi-channel image. The
channel order is the same as the list.

• Parameters

Input images list -il image1 image2... Mandatory
The list of images to concatenate, must have the same size.

Output Image -out image [dtype] Mandatory
The concatenated output image.

Available RAM (MB) -ram int Default value: 256
Available memory for processing (in MB).

• Implementations

• Graphical User Interface

• Command line Interface

• Python API

• Result

otbcli_ConcatenateImages -il ExtractROI_Ortho.tif Superimposed_S2_B02_to_S1.tif \

Superimposed_S2_B03_to_S1.tif Superimposed_S2_B04_to_S1.tif Superimposed_S2_B08_to_S1.tif \

-out ConcatenateImages_S1_S2.tif

import otbApplication

app = otbApplication.Registry.CreateApplication("ConcatenateImages")

app.SetParameterStringList ("il", ['ExtractROI_Ortho.tif', \
'Superimposed_S2_B02_to_S1.tif', 'Superimposed_S2_B03_to_S1.tif', \
'Superimposed_S2_B04_to_S1.tif', 'Superimposed_S2_B08_to_S1.tif'])
app.SetParameterString("out", " ConcatenateImages_S1_S2.tif")

app.ExecuteAndWriteOutput()

3.1.4.5. Classification

• KMeansClassification

Unsupervised KMeans image classification

• Description

Unsupervised KMeans image classification. This is a composite application, using existing training
and classification applications. The SharkKMeans model is used.

• Parameters

Input Image -in image Mandatory
Input image filename.

Output Image -out image [dtype] Mandatory
Output image containing class labels

Number of classes -nc int Default value: 5
Number of modes, which will be used to generate class membership.

Training set size -ts int Default value: 100
Size of the training set (in pixels).

Maximum number of iterations -maxit int Default value: 1000
Maximum number of iterations for the learning step.
If this parameter is set to 0, the KMeans algorithm will not stop until convergence

• Implementations

• Command line Interface

• Python API

otbcli_KMeansClassification -in ConcatenateImages_S1_S2.tif -ts 1000 -nc 5 -maxit 1000 \

-out Kmeans_Classification_S1_S2.tif uint8

import otbApplication

app = otbApplication.Registry.CreateApplication("KMeansClassification")

app.SetParameterString("in", " ConcatenateImages_S1_S2.tif")
app.SetParameterInt("ts", 1000)
app.SetParameterInt("nc", 5)
app.SetParameterInt("maxit", 1000)
app.SetParameterString("out", " Kmeans_Classification_S1_S2 .tif")
app. SetParameterOutputImagePixelType ("out", 1)

app.ExecuteAndWriteOutput()

• Graphical User Interface

• Result

3.1.5. Summary

All the results obtained previously are summarized in the following diagram:

Mundi Web Services provides you with a script that allows you to run all the process in one step,
whether with the command line interface or with the python API. The different ways to run this
process can be found in the Mundi tutorial folder (precisely data_fusion_use_case folder) and are
organized as follows:

• Command line

In order to run the process using the command line script you have to move to the command line
directory like this

 And then run the following command

• Python API

Same thing for the python script you have to move to the Python API directory like this

And then run the following command

sudo docker run -it -v $(pwd):/Tutorial -w /Tutorial
publicreg.mundiwebservices.com/orfeo_toolbox:<version> bash Run_commandline_Use_case

sudo docker run -it -v $(pwd):/Tutorial -w /Tutorial
publicreg.mundiwebservices.com/orfeo_toolbox:<version> python3 Run_python_Use_case.py

3.2. Interferometry Use case

What is Interferometry?

Interferometric synthetic aperture radar (InSAR) exploits the phase difference between two complex
radar SAR observations taken from slightly different sensor positions and extracts information about the
earth’s surface.
A SAR signal contains amplitude and phase information. The amplitude is the strength of the radar
response and the phase is the fraction of one complete sine wave cycle (a single SAR wavelength). The
phase of the SAR image is determined primarily by the distance between the satellite antenna and the
ground targets. By combining the phase of these two images after coregistration, an interferogram can
be generated whose phase is highly correlated to the terrain topography. In the case of differential
interferometry (DInSAR), this topographic phase contribution is removed using a digital elevation model
(DEM). The remaining variation in the interferogram can be attributed to surface changes which occurred
between the two image acquisition dates, as well as unwanted atmospheric effects.

3.2.1. Goal

The aim of this tutorial is to analyze potential events (earthquake, destruction …) by highlighting
differences between two SAR images of the same portion of the Earth’s surface taken at different
time using the differential SAR interferometry (DInSAR) technique.

3.2.2. Skills acquired at the end of the training

• Interferometry
• Map deformation
• Building interferograms from two SLC images

3.2.3. Training kit

• Mundi OTB Docker Image
The docker version made available on Mundi, has been built by Mundi development team
and can be found here. (You have to log yourself with your mundi credential to see the
content of the mundi shared docker repository). In order to use the OTB docker image on
your VM, docker must be installed in all Mundi VM templates and the following commands
must be executed replacing <variable> according to your needs:
- Log yourself to the docker repository with your mundi website credentials :
sudo docker login -u <Mundi website user email> -p <Mundi website user password>

https://publicreg.mundiwebservices.com/

- Get the needed docker images on your VM :
sudo docker pull publicreg.mundiwebservices.com/orfeo_toolbox:<version>

- Launch your docker in order to use orfeo-toolbox :
sudo docker run -it -v $(pwd):/data

publicreg.mundiwebservices.com/orfeo_toolbox:<version> bash

• Dataset
The data used in this tutorial includes images from Sentinel-1 SLC IW over the eastern side
of Réunion island (a French department) in the Indian Ocean at different time. The figure below
shows the extent and location of the Sentinel 1 -1 SLC IW data (yellow), and the area of interest
over the shield volcano Peak of the Furnace (blue)

https://share.val.mundiwebservices.com/#browse/search/docker:6dfda0a843f4201d7c831731b2609aee
https://publicreg.mundiwebservices.com/
https://en.wikipedia.org/wiki/R%C3%A9union
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Departments_of_France
https://en.wikipedia.org/wiki/Indian_Ocean

• Sentinel-1 SLC IW : Single Look Complex (SLC) Interferometric Wide (IW) Swath products
consist of focused SAR data geo-referenced using orbit and attitude data from the
satellite and provided in zero-Doppler slant-range geometry. Mundi Web Services
provides the complete collection, with fresh free data ONLINE from January 2018 with
global coverage, and from January 2017 for Europe. A rolling policy of 12 months for
World and 24 months for Europe is currently applied. We are making more data
available every day. Discover and view the products with our Geodata UI here
The IW SLC product used in this tutorial contains one image per sub-swath, per
polarization channel, for a total of three images. Each sub-swath image consists of a
series of bursts, where each burst was processed as a separate SLC image. The
individually focused complex burst images are included, in azimuth-time order, into a
single sub-swath image, with black-fill demarcation in between.
The figure below shows the Sub-swaths (red) and bursts (white) of S1 IW products as
well as the subset used in this tutorial (bleu)

https://mundiwebservices.com/geodata/S1_L1_SLC

3.2.4. Processing Chains

This section presents the pipeline devoted to the implementation of a legacy processing chain for
SAR interferometry called Diapason using OTB applications. This remote module called DiapOTB
contains all the necessary steps (depicted in the following diagram) and allows to launch a
complete differential SAR interferometry (DInsar) chain using Sentinel-1 data

3.2.4.1. Implementation

Mundi Web Services provides you with a script that allows you to run all the process in one step,
with the python API. The different files used to run this process can be found in the Mundi tutorial
folder, precisely in the Interferometry_use_case folder as follows

The processing chain needs metadata to launch the applications. Thus, the path to the input
images must be into the native directory for each kind of products (i.e SAFE directory for
Sentinel-1 products) as follow

To launch this processing chains, only one argument is required as inputs: a configuration file
(json format). An interactive script was developed to generate this configuration file following
a user's Q&A.

Thus, to execute the chain first, you have to move to the Interferometry use case directory like
this:

And then run the following commands

An interactive script will appear to help you set up the configuration file and you will need to
answer the following questions as you wish, an example is given here

Log yourself to the docker repository with your mundi website credentials :
sudo docker login -u <Mundi website user email> -p <Mundi website user password>

https://publicreg.mundiwebservices.com/

Get the OTB docker image
sudo docker pull publicreg.mundiwebservices.com/orfeo_toolbox:ubuntu18.04-7.0

Launch the processing workflow
sudo bash Run_Use_Case.sh

https://publicreg.val.mundiwebservices.com/

3.2.4.2. Results

These illustrations show terrain displacements after the volcanic eruption of Peak of the
Furnace (eastern side of Réunion island) that occurred on February 10th 2020, computed on
MUNDI VM with the remote module DiapOTB from a set of ascending Sentinel-1 pair (resp
2019/12/12 and 2020/03/05). One fringe represents a displacement of half the wavelength in
Line Of Sight (LOS), that is about 2.8 cm for Sentinel-1.

https://en.wikipedia.org/wiki/R%C3%A9union

